sexta-feira, 16 de março de 2012

COMO O GRAFENO PODE MUDAR AS NOSSAS VIDAS?



A estrutura atômica hexagonal das moléculas do grafeno proporciona máxima flexibilidade com extrema resistência. Um material tão ou mais revolucionário do que o silício e o plástico, extremamente forte, leve, flexível, ótimo condutor de eletricidade e quase totalmente transparente. 



Esse é o cartão de visitas do grafeno, que deu o Prêmio Nobel de Física de 2010 para Andre Geim e Konstantin Novoselov, da Universidade de Manchester (Grã-Bretanha) – o dínamo de uma provável nova era industrial. Essa fina lâmina de carbono de um átomo de espessura não é exatamente uma novidade. Ela já havia sido notada em 1947, pelo físico canadense P. R. Wallace, no estudo das propriedades eletrônicas da grafite, o metal usado na fabricação de lápis, de onde o grafeno também é extraído. Mas obter uma amostra dela fosse então considerado impossível.

O grafeno só foi observado pela primeira vez em 1962, pelos químicos alemães Ulrich Hofmann e Hanns-Peter Boehm. Foi Boehm quem o batizou. Mas suas propriedades ficaram desconhecidas por décadas, até ele reaparecer em grande estilo em 2004, na Universidade de Manchester. Curiosamente, a cidade que se tornou símbolo da Revolução Industrial, no início do século 19.

Dois cientistas emigrados da Rússia – o holandês Geim, diretor do departamento de Física da universidade, e o russo-britânico Novoselov, pesquisador de pós-doutorado – começaram a pensar, em Manchester, na criação de uma substância bidimensional que servisse de opção ao silício usado em semicondutores. Decidiram fazer experiências com a grafite e buscaram obter a mais fina fatia possível desse metal para ver como funcionaria.

De modo inesperado, nos fragmentos presos em uma fita adesiva que os cientistas usavam para limpar a superfície de um bloco de grafite, surgiu o grafeno. Examinados em um microscópio atômico, esses resíduos foram testados e, já na primeira tentativa, funcionaram bem como transistores.

A partir daí, e durante meses, a equipe de Geim e Novoselov foi melhorando a condutividade do fragmento, tornando-o cada vez mais fino, até chegar à espessura de um átomo. Para surpresa dos cientistas, o material ultrafino não só mantinha uma estrutura de ligação hexagonal, semelhante à de uma cerca de galinheiro, como também apresentava um peculiar arranjo simétrico de elétrons que aumentava sua condutividade.

A descoberta dessas e de outras propriedades do grafeno, divulgadas por Geim e Novoselov ainda em 2004, rendeu-lhes seis anos depois o Nobel de Física, e deu início a uma corrida ao material em várias partes do mundo.

Desde então, ele continua a surpreender os pesquisadores com um potencial aparentemente ilimitado de aproveitamentos – só em 2010, foram publicados cerca de 3 mil estudos a esse respeito. “O grafeno não tem apenas uma aplicação”, afirma Geim. “Não é nem mesmo um material: é uma enorme gama de materiais. Uma boa comparação seria a maneira como os plásticos são usados.”

As pesquisas se espalham por várias direções e suas possibilidades têm deixado muita gente eufórica – o governo britânico, por exemplo, vai investir 50 milhões de libras (cerca de R$ 144 milhões) nas pesquisas da equipe da Universidade de Manchester e na criação de um centro regional que leve conhecimentos para as indústrias.

Mas vários pesquisadores ressalvam que a novidade deve ser vista com mais cautela.

Para Novoselov, por exemplo, é preciso tempo para o grafeno ser viabilizado industrialmente. O silício, lembra, só passou a ser usado em transistores seis ou sete anos após o seu surgimento, e os primeiros circuitos integrados só foram fabricados 10 ou 20 anos depois disso. Mas as perspectivas são entusiasmantes.

O pesquisador Phaedon Avouris, da IBM, diz que o grafeno ainda não substitui o silício, pois, embora seja um excelente condutor, não pode ser “desligado”, o que o tornaria inviável para certas utilizações. Todo o potencial tem de ser testado na prática: “O tipo de força que as pessoas citam pode nem mesmo se aplicar a amostras microscópicas”, ressalta o físico Yu-ming Lin, também da IBM.

No geral, a comunidade acadêmica está deslumbrada. Muitos apostam que o grafeno vai ser um protagonista de peso em nosso cotidiano nos próximos tempos. Segundo Novoselov, ele pode inclusive significar a porta para a criação de objetos que ainda pertencem ao reino da imaginação. “A verdadeira empolgação, atualmente, é a forma como podemos agora recobrir o grafeno com diferentes materiais bidimensionais, cada camada possuindo propriedades diferentes”, ressalta.

Os limites para o grafeno ainda terão de ser descobertos.

Por Eduardo Araia



Recordes de desempenho

• 1 metro quadrado de rede de grafeno poderia suportar um gato de 4 quilos; a rede pesaria 0,77 miligrama e seria praticamente invisível;

• 200 vezes maior que a do aço é a sua resistência.
6 mil átomos ou seja, uma área inferior a 20 nanômetros – tornam o grafeno o material termodinamicamente mais instável conhecido. Mas com 24 mil átomos ele se torna o material mais estável conhecido;

• 100 milhões de dólares por cm2 quadrado era o preço do grafeno em 2008; em 2009, o início da produção em escala derrubou o valor para US$ 100/cm2;

• 150 gigahertz é a velocidade do transistor criado pela IBM usando grafeno; o mais rápido de silício alcança cerca de 40 GHz;

• 3 milhões de camadas de grafeno empilhadas têm altura de 1 milímetro;

• 1 átomo é a espessura do material.


Teia de aplicações

Aparelhos com telas sensíveis ao toque 
Quase todos os aparelhos eletrônicos disponíveis possuem telas com óxido de índio-estanho, uma substância transparente e ótima condutora. O índio, porém está cada vez mais raro. Já o grafeno vem do abundante carbono. Com ele, as telas touchscreen ganhariam uma qualidade adicional: flexibilidade.

Pesquisadores sul-coreanos trabalhando em parceria com a Samsung abriram o caminho, ao produzir uma camada contínua de grafeno com 63 centímetros de largura de uma forma que facilita a fabricação em massa. As telas flexíveis podem ser o ponto de partida para aparelhos como celulares e tablets capazes de ser enrolados como uma folha de papel.

Para tanto, o restante desses artefatos também teria de ser flexível, mas esse é um obstáculo menor do que se imagina. A IBM já montou um transistor de grafeno em escala de placa semicondutora, e no ano passado apresentou um modelo conceitual de circuito de grafeno. A Nokia estuda o uso do grafeno em aparelhos móveis, trabalhando com a ideia de artefatos transparentes e munidos de células solares. Os primeiros aparelhos entortáveis deverão chegar ao mercado em 2013.

Internet 
O grafeno pode ajudar a tornar a internet muito mais rápida. Cientistas das universidades de Manchester e de Cambridge aperfeiçoaram dispositivos baseados no grafeno para uso de fotodetectores em sistemas óticos de comunicação em alta velocidade.

Ao combinar grafeno com nanoestruturas metálicas, os pesquisadores conseguiram transmitir a luz numa velocidade 20 vezes maior. Notaram ainda que, ao colocar as estruturas sobre o grafeno e iluminá-las, obtinham energia: o conjunto resultante comporta-se como uma célula solar. A eficiência na transmissão de luz deverá aumentar com novas pesquisas.

Próteses 
Com o grafeno será possível produzir membros mais resistentes, flexíveis e leves. Além disso, sua boa condutividade lhe permitiria integrar eletrodos usados para converter sinais cerebrais em movimento.

Células de hidrogênio
Folhas de grafeno oxidadas e sobrepostas armazenam hidrogênio com alto grau de impermeabilidade. Isso as torna ótima opção para o rendimento do combustível de veículos “verdes”.

Indústrias civil, automotiva, aeronáutica e naval 
Materiais compostos que contêm grafeno teriam enorme resistência (o que aumenta a segurança em caso de acidentes) e seriam leves, portanto mais econômicos em relação aos usados hoje.

Painéis solares
Cientistas do Instituto de Tecnologia de Massachusetts afirmam que o grafeno tornaria os eletrodos das células solares orgânicas (constituídas de moléculas à base de carbono) mais leves, flexíveis e baratos do que os disponíveis hoje.

Iluminação
Por ser eletroquimicamente estável, o grafeno é ideal para ser usado em células eletroquímicas emissoras de luz (LEC). 

Uma combinação de uma camada orgânica transparente com dois eletrodos de grafeno dá origem a janelas e portas quase transparentes quando desligadas, que se tornam fontes de luz quando ligadas.

FONTE: http://www.terra.com.br/revistaplaneta/edicoes/472/artigo244977-2.htm



Nenhum comentário:

Postar um comentário